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Motivation

Diabetes remains a significant health condition today, and affects not only key regula-

tory systems within the body, but certain bodily tissues as well. This disease is perhaps

best associated with a disturbance in the processing of sugar consumed through food,

due to either a lack of insulin or to a decreased efficiency of this hormone within an

affected person[1]. However, it is equally important to note that diabetes has demon-

strated effects within the composition of the microvasculature, shown by thickening of

the basement membrane in human capillaries[2]. This alteration of the vessel structure

can be linked to a deficiency in the amount of oxygen that is ultimately transported to

the surrounding body tissue[3]. By modelling the physiological effects of diabetes on

the capillaries, the effects of this disease can be better understood in order to potentially

mitigate its accompanying health risks.

The scope of diabetes within the United States alone has been well established. The

Centers for Disease Control and Prevention (CDC) have estimated that 29.1 million,

or 9.3%, of the population have developed some form of diabetes, with approximately

8 million of this number remaining undiagnosed[4]. This condition has been related to

other health risks as well, as death rates from cardiovascular disease have been shown

to be almost twice as high in affected individuals over eighteen years old. Additionally,

hospitalization rates for instances of both heart attack and stroke are almost twice as

high in affected individuals over twenty years old. The effects of diabetes also include

significant medical costs, with $176 billion, over two times the costs for those without

this disease, estimated for average expenditures[4].

Problem Statement

Basement membrane thickening is a significant change affected by the development

of diabetes in both type I and type II varieties. Because it is composed of proteins

that are closely related to collagen, this membrane experiences an increase in protein

synthesis when subjected to various types of damage caused by diabetes and its related

health conditions[2]. This state of the vessel boundary, as pictured in Figure 1, has been

linked to several conditions resulting from diabetes, such as neuropathy[3]. Additionally,
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research[5] has yielded distributions of membrane thickness for both diabetic patients as

well as unaffected individuals. The results, shown in Figure 2, display a significant

increase in membrane width that is enhanced with age 5. Further studies have implied

that this increase in thickness is due to a large turnover accompanied by a significant

decrease in the eventual degradation of the membrane[2].

Figure 1: Images of capillaries with both normal and increased thickness (left) along

with distributions of membrane area in normal and diabetic patients.[3]

Figure 2: Effects of diabetes and aging on membrane thickness compared to unaffected

individuals.[5]

The effects of diabetes on the capillary basement membrane width result in multiple

disruptions in the final steps of oxygen delivery. After passing the vessel wall following

release, diffusion is the primary driving force of oxygen to reach the surrounding tissue.

However, the distance that can be covered by this process is extremely limited, requiring
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Figure 3: Oxygen transport under normal and diabetic conditions. Distance between the

individual capillaries is increased, reducing the effects of normal diffusion.[7]

close arrangement of the capillary array. In patients with diabetes, the space between

individual capillaries is greatly increased, while the limited range of diffusion creates

regions in the tissue where ischemia can develop (Figure 3). In this case, therapies

might be necessary in order to increase the partial pressure of oxygen within the vessels,

restoring delivery[6].

Prior to diffusion outside the vessels, oxygen deficiency may also occur due to an in-

crease in blood velocity due to diabetes. It has been reported that during an increase

in membrane width, a “shunt” may occur within the vessel network, perturbing flow

within the capillaries and preventing delivery to the surrounding tissue due to less time

for oxygen extraction[3]. While this prompts an increase in blood flow to meet the needs

of the tissue, hypoxia can arise in the adjacent cells[3]. This increase in fluid velocity

has also been observed in other studies of diabetes, listing an interquartile range from

15.9 x 10−3 cm/s to 89.0 x 10−3 cm/s in those unaffected by diabetes, and a range from

68.4 x 10−3 cm/s to 21.8 x 10−2 cm/s in those with the condition[7].

Both the increase in distance between capillaries and the disturbed flow within the vas-

culature provide the basis for a model that can represent the extent of diabetes with

respect to oxygen delivery. In each case, the final transfer of oxygen to the body is in-

hibited, due to increases in the flow of the blood itself as well as to increased distances

covered by the basement membrane. By taking the parameters found under each of

these conditions into account, oxygen movement within the capillaries can be charac-

terized at each step. This is modelled from the release of molecules from hemoglobin

into an individual vessel, followed by passage through the surrounding wall and base-

ment membrane, and finally through the tissue itself. In this way, the extent of change
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to this process under diabetic conditions can be better understood by way of a compre-

hensive model.

Model

The model derived is based on oxygen transport at multiple stages within a vessel and

its surrounding tissues. In this instance, movement through the vessel itself, the vessel

wall, and a portion of tissue beyond the wall has been accounted for. The blood vessel

is modeled as a single capillary where hemoglobin releases oxygen, which exits the

cell as it enters into the plasma. From here, oxygen travels to the vessel wall, normally

experiencing both convection and diffusion while moving towards a layer of endothelial

cells, and subsequently diffusing further into the absorbing tissue (Figure 4).

Figure 4: Model of oxygen transport within a single capillary. This pathway depicted

indicates oxygen release from hemoglobin and exit from the cell, followed by

flow down the vessel and diffusion to the vessel wall and surrounding tissue.

Within the developed model, certain assumptions are made to produce a mathematical

analysis of oxygen transport. The interstitial space between the vessel wall and the

tissue has been disregarded. Assumptions are determined for each stage of transport,

and are made based on reasonable estimates as well as a focus on diffusion in a single

dimension within the model. The following sections explain each stage in further detail.

Blood vessel

The assumptions considered for the blood vessel are listed below.

1) Homogenous solution of hemoglobin

2) No diffusion in the axial direction
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Figure 5: Model of oxygen transport within a blood capillary.

3) No flow in the radial direction

4) Hb, HbO2 and O2 are in equilibrium

5) Constant velocity of oxygen along the axial (z) direction

6) Constant diffusion coefficient Dc

Convection currents are not important for our model and transport of oxygen occurs

primarily in the radial direction. Considering these simplifications, the blood vessel is

modeled as a small capillary[10]. Diffusion occurs exclusively in the radial direction at

a constant diffusivity Dc and axial diffusion is ignored. Deoxygenated hemoglobin and

oxygen are assumed to be in equilibrium with oxygenated hemoglobin, and the concen-

tration of hemoglobin [Hb] is held constant. Finally, the velocity of oxygen transported

is only considered in the z-direction at a constant rate v. From these parameters, the

following balance equations are utilized for hemoglobin and oxygen.

∂[O2]

∂t
+ v.∇[O2] = DO2

∇
2[O2]−RO2

(1)

∂[HbO2]

∂t
+ v.∇[HbO2] = DHbO2

∇
2[HbO2]−RO2

(2)

These equations are simplified for the case of steady state flow and oxygen transport in

a cylindrical conduit. Considering neglected diffusion in axial (z), or flow direction and

no flow in the radial direction (r), the equations are translated to as below.

v
∂[O2]

∂z
= DO2

(
∂2[O2]

∂r2
+

1

r

∂[O2]

∂r
)− k

′

[Hb][O2] + k[HbO2] (3)
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v
∂[HbO2]

∂z
= DHbO2

(
∂2[HbO2]

∂r2
+

1

r

∂[HbO2]

∂r
) + k

′

[Hb][O2]− k[HbO2] (4)

In order to obtain the analytical solution, the problem is further simplified. Fluid veloc-

ity is only considered in the radial direction, oxyhemoglobin and oxygen are in local

chemical equilibrium (or the rate of reaction is zero), and diffusion only in the radial

direction. No net oxygen exchange was assumed across the boundary. Thus, zero flux

boundary conditions are considered at both boundaries of capillary. The initial concen-

tration of oxygen in the capillary is modeled on the basis of fluid velocity inside a tube.

Consequently, the concentration is highest at the center of the capillary C0 and is zero

at the boundary, varying radially in a linear fashion. The above assumptions lead to the

following equation.

∂[O2]

∂t
=

Dc

r

∂(r ∂[O2]
∂r

)

∂r
(5)

Boundary conditions:

∂[O2]

∂r
(0, t) = 0

∂[O2]

∂t
(rcw, t) = 0 (6)

Initial condition:

[O2](r, 0) = C0(1−
r

rcw
) (7)

Vessel wall

Figure 6: Model of oxygen transport within the vessel wall.

The assumptions for this stage are as follows:
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- Diffusion only occurs in the radial direction

- Uniform consumption of oxygen by mitochondria in endothelial cells

- Constant diffusivity Dw

Similar assumptions as the capillary are made for the vessel wall. Additionally, a con-

stant consumption term of oxygen by mitochondria is considered. This consumption

term is represented as Mw. A simple way of connecting the three stages of oxygen

transport is devised. The steady state value of oxygen concentration is used as a bound-

ary condition for the consequent stage. Thus, steady state oxygen concentration derived

from the capillary stage is used as a boundary condition here. Zero flux condition is

considered at the other boundary. It is also assumed that there is no oxygen present in

the vessel wall initially. These assumptions lead to the following equations.

∂[O2]

∂t
=

Dw

r

∂(r ∂[O2]
∂r

)

∂r
−Mw (8)

Boundary conditions:

[O2](rcw, t) = C0 − 0.5
∂[O2]

∂t
(rwt, t) = 0 (9)

Initial condition:

[O2](r, 0) = 0 (10)

Tissue

Figure 7: Model of oxygen transport within the surrounding tissue.

The assumptions considered for the surrounding tissue are as given:

- Diffusion only occurs in the radial direction

- Uniform consumption of oxygen by mitochondria in endothelial cells
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- Constant diffusivity Dt

Assumptions for the surrounding tissue are similar to those considered in the vessel

wall. Steady state oxygen concentration in the vessel wall is used as a boundary con-

dition here. It is assumed that there is no oxygen present in the tissue initially. The

equations are as follows.

∂[O2]

∂t
=

Dt

r

∂(r ∂[O2]
∂r

)

∂r
−Mt (11)

Boundary conditions:

[O2](rwt, t) =
Mw

4Dw

r2wt + C0 − 0.5
∂[O2]

∂t
(rt, t) = 0 (12)

Initial condition:

[O2](r, 0) = 0 (13)

Analytical Solution

Blood vessel

∂[O2]

∂t
=

Dc

r

∂(r ∂[O2]
∂r

)

∂r
(14)

Boundary conditions:

∂[O2]

∂r
(0, t) = 0

∂[O2]

∂t
(rcw, t) = 0 (15)

Initial condition:

[O2](r, 0) = C0(1−
r

rcw
) (16)

This simplified model resembles a homogenous partial diffusion equation in the cylin-

drical coordinates. It can be solved using separation of variables.

u(r, t) = X(r)T (t) (17)

Substituting this new definition into the homogenous PDE and rearranging results in

one time-dependent equation and one space-dependent equation. Bessel functions are
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used for the solution.

T (t) = Ce−Dλ2t (18)

r2
∂2X

∂r2
+ r

∂X

∂r
+ r2λ2x = 0 (19)

X(r) = AJ0(λr) (20)

Applying the boundary conditions and using local extremes of Bessel function

∂Jn(0)

∂r
= 0

∂Jn(0)

∂r
= 0 (21)

X = λn0
r (22)

Using the principle of superposition, the final solution to the homogenous equation is

the weighted sum of all possible solutions:

u(r, t) =
∞∑
n=1

AnJ0(λnr)e
−Dλ2t (23)

To solve for the constant An, the initial condition is applied to the above solution. The

result is integrated over the radius of the capillary.

u(r, 0) = u0(r) =
∞∑
n=1

AnJ0(λnr) (24)

∫ rcw

0

u0(r)J0(λmr)rdr =
∞∑
n=1

An

∫ rcw

0

J0(λnr)J0(λmr)rdr (25)

∫ rcw

0

u0(r)J0(λmr)rdr = Am

r2cw
2

J1(λmrcw)
2 (26)

Am =
2C0

∫ rcw

0
(1− r

rcw
)J0(λmr)rdr

r2cwJ1(λmrcw)2
(27)

Solving for integrals of the above Bessel functions becomes complicated. Hence, the
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same setup is solved in Cartesian coordinates. The solution is as follows.

O2(r, t) = (C0 − 0.5) +
∞∑
n=1

2C0

(nπ)2
(1− cos(nπ))cos(

nπ

rcw
)e−Dc(

2
nπrcw)t (28)

Figure 8: Analytical and numerical solution for blood vessel modeled as capillary in

Cartesian coordinates.

Vessel wall

∂[O2]

∂t
=

Dw

r

∂(r ∂[O2]
∂r

)

∂r
−Mw (29)

Boundary conditions:

[O2](0, t) = C0 − 0.5
∂[O2]

∂t
(Lw, t) = 0 (30)

Initial condition:

[O2](r, 0) = 0 (31)

For the particular solution, a steady state condition was assumed to arrive at the solution.

0 =
Dw

r

∂(r ∂[O2]
∂r

)

∂r
−Mw (32)
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up(r, t) =
Mw

4Dw

r2 + C0 − 0.5 (33)

The homogenous partial diffusion equation in cylindrical coordinates can be solved

using separation of variables.

uh(r, t) = X(r)T (t) (34)

Substituting this new definition into the homogenous PDE and rearranging results in

one time-dependent equation and one space-dependent equation. Bessel functions are

used for the solution.

T (t) = Ce−Dλ2t (35)

r2
∂2X

∂r2
+ r

∂X

∂r
+ r2λ2x = 0 (36)

X(r) = AJ0(λr) (37)

Applying the boundary conditions and using local extremes of Bessel function

∂Jn(0)

∂r
= 0

∂Jn(0)

∂r
= 0 (38)

X = λn0
r (39)

Using the principle of superposition, the final solution to the homogenous equation is

the weighted sum of all possible solutions:

uh(r, t) =
∞∑
n=1

AnJ0(λnr)e
−Dλ2t (40)

To solve for the constant An, the initial condition is applied to the sum of particular and

homogenous solution. The result is integrated over the width of vessel wall.

u(r, 0) = u0(r) =
∞∑
n=1

AnJ0(λnr) (41)
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−

∫ Lw

0

u0(r)J0(λmr)rdr =
∞∑
n=1

An

∫ Lw

0

J0(λnr)J0(λmr)rdr (42)

−

∫ Lw

0

u0(r)J0(λmr)rdr = Am

r2cw
2

J1(λmLw)
2 (43)

u(r, t) =
∞∑
n=1

−
2

L2
w

(
J2(λmLw − J3(λmLw))

λmJ1(λmLw)
+(C0−0.5)Lw

1

λJ1(λmLw)
)J0(λmLw)e

−Dwλmt

(44)

Tissue

∂[O2]

∂t
=

Dt

r

∂(r ∂[O2]
∂r

)

∂r
−Mt (45)

Boundary conditions:

[O2](0, t) =
Mw

4Dw

r2cw + C0 − 0.5
∂[O2]

∂t
(Lt, t) = 0 (46)

Initial condition:

[O2](r, 0) = 0 (47)

For the particular solution, a steady state condition was assumed to arrive at the solution.

0 =
Dt

r

∂(r ∂[O2]
∂r

)

∂r
−Mt (48)

up(r, t) =
Mt

4Dt

r2 + C0 − 0.5 (49)

The solution is similar to that of vessel wall.

u(r, t) =
∞∑
n=1

−
2

L2
t

(
J2(λmLt − J3(λmLt))

λmJ1(λmLt)
+(

Mw

4Dw

r2wt+C0−0.5)Lt

1

λJ1(λmLt)
)J0(λmLt)e

−Dtλmt

(50)
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Table 1: Values of Parameters

Constant Description V alue

v O2 velocity in capillary 0.1 cm/s[10]

vd O2 velocity in capillary in diabetes 0.12 cm/s[7]

Co Initial O2 concentration in capillary 1.62 x 10−4 g/ml[10]

[Hb] Deoxyhemoglobin Concentration in capillary 0.55 g/ml[10]

[HbO2] Hemoglobin Concentration in capillary 0.34 g/ml[10]

kp Oxygen and Hemoglobin association rate 30 x 10−6 /Ms[11]

k Oxygen dissociation rate 20 x 10−6 /Ms[11]

Dc Diffusivity of O2 in capillary 1.62 x 10−5 cm2/s[10]

Dw Diffusivity of O2 in vessel wall 8.73 x 10−6 cm2/s[10]

Dt Diffusivity of O2 in tissue 2.41 x 10−5 cm2/s[10]

rcw Inner radius of vessel wall 4.0 x 10−4 cm[10]

rwt Outer radius of vessel wall 6.0 x 10−4 cm[8]

rwt,d Outer radius of vessel wall in diabetes 9.0 x 10−4 cm[8]

rt Outer radius of tissue 15.0 x 10−4 cm (arbitrary)

Mw O2 consumption in vessel wall 5.0 x 10−3 mlO2/ml/s[12]

Mt O2 consumption in tissue 1.58 x 10−4 mlO2/ml/s[12]

Numerical Model

The numerical validation is computed using MATLAB and its built-in PDE solver. Ad-

ditional factors not included in the analytical solution are accounted for including: ve-

locity of blood flow in the z-direction, dissociation rates of hemoglobin and oxygen,

and coupling of boundary conditions between the different sections of the model. The

equations used for the numerical validation are as follows and parameters are those

listed in the table. Boundary and initial conditions mentioned in the model description

have been used.

Blood vessel:

v
∂[O2]

∂z
= Dc(

∂2[O2]

∂r2
+

1

r

∂[O2]

∂r
) +RO2

(51)

RO2
= k[HbO2]− kp[Hb][O2] (52)

Vessel wall:
∂[O2]

∂t
=

Dw

r

∂(r ∂[O2]
∂r

)

∂r
−Mw (53)
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Surrounding tissue:

∂[O2]

∂t
=

Dt

r

∂(r ∂[O2]
∂r

)

∂r
−Mt (54)

In diabetic patients, the width of the vessel wall is larger compared to healthy condition.

The following graphs illustrate the levels of oxygen concentration in diabetic condition

in comparison to normal vessel wall width. In order to better visualize the oxygen

concentration differences between diseased and healthy conditions, 2D graphs were

plotted representing oxygen levels in each stage.

Figure 9: Plots of oxygen transport within healthy and diabetic capillaries.

Figure 10: Plots of oxygen transport through the vessel wall under normal and diabetic

conditions.

Figure 11: Plots of oxygen transport through the surrounding tissue under normal and

diabetic conditions.
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Figure 12: Oxygen transport cutoff within healthy and diabetic tissue at 0.4 seconds.

Figure 13: Oxygen transport within the capillary. Plots indicate the transport over time.
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Conclusion and Future Work

We constructed a multi-scale model of oxygen diffusion from a capillary into surround-

ing tissue to show the effects of diabetes on oxygen availability. In the analytical model

we simplified the both geometry and different stages involved in the process in addition

to utilizing steady state solutions as boundary conditions for the following step in the

transport of oxygen to the surrounding tissue. The effect of velocity increase in the di-

abetic condition on oxygen availability can be seen in the capillary plots of figure one.

Increased velocity (by approximately 120%) in diabetes does not decrease the amount

of oxygen available at the red blood cell (RBC) site (Z= 0 cm) (seen in figure 13 and

plot 3 of figure 9) but does decrease the amount of oxygen further away (in our case Z=

0.5cm, figure 9 plot 3).

This difference in oxygen is carried through to the vessel wall and tissue (figures 10

and 11). The steady state value of the previous stage was taken as the left boundary

condition in these calculations. As can be seen, the original difference in oxygen caused

by velocity increase in diabetes carries through to the tissue. However, it is notable that

the shape of the oxygen availability curve at the interface of the vessel wall and tissue

(the third plot of figure 10), changes due to a thicker membrane.

Figure 12 shows the compounded effect of capillary membrane thickening and in-

creased velocity, where a cutoff time is set at .04 seconds of diffusion in the vessel

wall and is used as the left boundary condition in the tissue stage. This reflects that

oxygen release by RBCs would come in pulses and diffusion would not go to steady

state. In that case, the thicker membrane in addition to increased capillary velocity

decreases the amount of oxygen available to tissue.

Finally, figure 13 shows the isolated effect of wall thickening on oxygen availability.

Plots one through three demonstrate that even with velocity being higher in the diabetic

condition, oxygen concentration is still the same at Z=0 (site of the RBC. However,

even if the same amount of oxygen is available to the vessel wall between the healthy

and diabetic case, the increased thickness still reduces oxygen availability (seen by the

gap between the red and blue line in the fourth plot.

In the numerical model, we were able to account for more factors involved in the oxy-

gen transport process and showed a decrease in the oxygen available to tissues during
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diabetes by using literature-based changes in blood velocity and wall thickness. Conse-

quently, less oxygen is available in the second step during transport through the capillary

wall, where another confounding factor in diabetes, basement membrane thickening,

further reduces the amount of oxygen that reaches the tissue. The difference in oxygen

available to tissue at interfaces of the stages and at the end can be seen in figures one

through three. Effectively, in the diabetic condition, oxygen is moving too quickly in

the capillary to properly diffuse to the rest of the body, which is further hindered by a

greater distance within the vessel wall that must be passed before reaching the tissue.

Chronic reduction in oxygen supply could be either correlative or causative with dia-

betes symptoms and complications. A primary argument for this would be a change in

cell metabolism in response to decreased oxygen. Ostergaard et al. observed an increase

in neuropathy in diabetic patients due to these changes in blood flow, which limited not

only oxygen availability to tissue but glucose as well3. While we applied this model to

the case of diabetes, it could also be used to analyze other disease states, such as anemia

or sickle cell disease. In addition, modifications could be made to model transport of

other nutrients or molecules, such as glucose, CO2 or CO.

Multiple complex chemical, geometric and anatomical aspects of oxygen transport were

either not included or were simplified for this model. These included assumptions re-

garding the nature of blood flow, simplifications in oxygen and hemoglobin dissoci-

ation kinetics, and simplified anatomy of the capillary (the interstitial space was not

included). In order to build a more realistic model we would want to account for these

aspects as well as the discrete nature of oxygen diffusion from individual red blood

cells, instead of a continuum.

Our model shows the decrease in oxygen made available to tissue in the diabetic case

compared to the healthy model. This is due to the observed increase in blood velocity

through capillaries in diabetes as well as basement membrane thickening. Therefore

oxygen has less time to diffuse through a given section of the capillary wall, and must

also travel a greater distance before reaching the tissue. We believe that by taking this

step to understanding the mechanisms of this disease, we provide a basis for continued

research into more effective therapeutics for those affected. We hope to continue this

study to gain further insight into increasingly complex scenarios provided by diabetes.
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